# The Leiodolide B Puzzle



Alexandre Larivée, John B. Unger, Mikaël Thomas, Conny Wirtz, Christophe Dubost, Shinya Handa, Alois Fürstner *Angew. Chem. Int. Ed.* **2010**, 50, 304

Nate Ware, Wipf Group Current Literature 01/29/11

### Leiodolides A and B



J. S. Sandler, P. L. Colin, M. Kelly, W. Fenical J. Org. Chem. 2006, 71, 7245

## **Isolation and Activity**



Deep Worker 2000

- Uchelbeluu Reef, Palau
- A new species of the genus Leiodermatium
- Isolated using *Deep Worker 2000* at 240 m (790 ft)
- 730 g of dry sponge gave 8 mg of leiodolide A (0.001%) and 0.8 mg of leiodolide B (0.0001%).
- Leiodolides A and B have IC  $_{50}$  values of 2.5  $\mu M$  and 3.8  $\mu M$  for HCT-116 human colon carcinoma.

http://www.nuytco.com/products/deepwater\_photos.shtml# J. S. Sandler, P. L. Colin, M. Kelly, W. Fenical *J. Org. Chem.* **2006**, 71, 7245



#### **Formation of Furan Fragment**







Nate Ware @ Wipf Group

## Formation of Furan Fragment



## Formation of the Oxazole Fragment



#### Formation of the Terminal Acid



#### Coupling of the Fragments



## **Cyclization and Completion**



Nate Ware @ Wipf Group

## <sup>13</sup>C Comparison

**Table 1:** Comparison of the <sup>13</sup>C NMR data of leiodolide B in [D<sub>4</sub>]MeOH reported in the literature (75 MHz)<sup>[2]</sup> with the recorded data (150 MHz) for acid (13*R*)-**2** and the four diasteromeric esters **50** and **51** shown in Scheme  $6^{[a]}$ 

| Position | Ref.  | (13 <i>R</i> )- <b>2</b> | (13 <i>R</i> )- <b>50</b> | (13 <i>S</i> )- <b>50</b> | (13 <i>R</i> )- <b>51</b> | (13 <i>S</i> )- <b>5</b> 1 |
|----------|-------|--------------------------|---------------------------|---------------------------|---------------------------|----------------------------|
| 1        | 166.6 | 166.7                    | 166.7                     | 166.7                     | 166.6                     | 166.9                      |
| 2        | 122.8 | 121.5                    | 121.5                     | 121.5                     | 121.8                     | 121.7                      |
| 3        | 153.1 | 153.1                    | 153.2                     | 153.5                     | 153.3                     | 153.5                      |
| 4        | 45.1  | 44.7                     | 44.7                      | 44.5                      | 45.6                      | 46.2                       |
| 5        | 71.7  | 72.0                     | 72.0                      | 72.0                      | 71.9                      | 71.6                       |
| 6        | 131.2 | 128.3                    | 128.3                     | 128.0                     | 128.9                     | 129.5                      |
| 7        | 125.5 | 128.4                    | 128.4                     | 129.2                     | 129.1                     | 128.4                      |
| 8        | 143.3 | 143.4                    | 143.1                     | 143.6                     | 143.7                     | 143.5                      |
| 9        | 134.5 | 135.2                    | 135.2                     | 135.1                     | 134.8                     | 135.5                      |
| 10       | 166.4 | 166.5                    | 166.5                     | 166.5                     | 166.6                     | 167.1                      |
| 11       | 25.7  | 25.8                     | 25.8                      | 25.1                      | 25.2                      | 26.0                       |
| 12       | 33.9  | 33.9                     | 33.9                      | 34.0                      | 34.5                      | 35.6                       |
| 13       | 30.5  | 29.4                     | 29.4                      | 30.4                      | 29.2                      | 31.5                       |
| 14       | 36.7  | 37.0                     | 37.0                      | 38.7                      | 36.7                      | 39.9                       |
| 15       | 78.0  | 77.9                     | 77.9                      | 79.0                      | 78.3                      | 79.6                       |
| 16       | 80.5  | 80.9                     | 80.9                      | 83.7                      | 80.9                      | 83.7                       |
| 17       | 78.4  | 78.7                     | 78.5                      | 79.2                      | 78.3                      | 77.8                       |
| 18       | 16.3  | 15.5                     | 15.5                      | 15.6                      | 15.9                      | 16.7                       |
| 19       | 13.7  | 14.1                     | 14.1                      | 14.3                      | 14.4                      | 14.2                       |
| 20       | 20.7  | 20.9                     | 20.9                      | 20.2                      | 20.9                      | 21.1                       |
| 21       | 58.0  | 58.0                     | 58.0                      | 59.1                      | 58.0                      | 59.9                       |
| 22       | 56.2  | 56.1                     | 55.9                      | 56.0                      | 55.8                      | 55.4                       |
| 23       | 84.0  | 84.5                     | 84.5                      | 84.7                      | 84.4                      | 84.2                       |
| 24       | 37.6  | 37.4                     | 37.3                      | 37.3                      | 37.5                      | 37.8                       |
| 25       | 126.5 | 127.8                    | 127.9                     | 127.9                     | 127.9                     | 127.8                      |
| 26       | 130.4 | 128.6                    | 128.4                     | 128.4                     | 128.5                     | 128.5                      |
| 27       | 39.2  | 39.1                     | 39.2                      | 39.2                      | 39.2                      | 39.2                       |
| 28       | 76.4  | 75.4                     | 75.7                      | 75.7                      | 75.8                      | 75.7                       |
| 29       | 182.7 | 179.1                    | 177.5                     | 177.5                     | 177.5                     | 177.5                      |
| 30       | 26.0  | 25.9                     | 25.9                      | 26.1                      | 26.0                      | 26.4                       |
| 31       | 26.4  | 26.0                     | 25.9                      | 25.9                      | 25.9                      | 25.9                       |
|          |       |                          |                           |                           |                           |                            |

[a] The heat map color-codes differences in chemical shift considered to be beyond the experimental error as follows: red:  $\Delta \delta \ge 1$  ppm; blue: 0.5 ppm  $\le \Delta \delta < 1$  ppm; green: 0.3 ppm  $\le \Delta \delta < 0.5$  ppm. For a comparison of the <sup>1</sup>H NMR data, see the Supporting Information.







## Summary

- Completed the proposed structure of leiodolide B.
- The actual structure of leiodolide B is left ambiguous.
- Aim to complete the more carefully characterized leiodolide A to assess the structure of this family of compounds.